Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.13.21263406

ABSTRACT

Robust polyclonal humoral immune responses have the potential to generate a diverse set of antibodies to neutralize and eliminate viruses such as SARS-CoV-2 and protect against transmission, re-infection and the evolution of variants that evade immunity. CD73 is present on subsets of human B and T cells where it plays a role in lymphocyte activation and migration. CD73 also functions as an ectoenzyme that converts AMP into immunosuppressive adenosine. We have developed a humanized anti-CD73 antibody, mupadolimab (CPI-006), that blocks CD73 enzymatic activity and activates CD73POS B cells, thereby inducing differentiation into plasmablasts, immunoglobulin class switching, and antibody secretion independent of the adenosine modulatory activity. These effects suggest mupadolimab may enhance the magnitude, diversity, and duration of anti-viral responses in patients with COVID-19. This hypothesis was tested in a dose escalation phase 1 trial in 29 hospitalized patients with COVID-19. Single doses of 0.3 mg/kg - 5 mg/kg mupadolimab were well tolerated with no drug related adverse events. Doses greater than 0.3 mg/kg resulted in rapid generation of IgG and IgM to SARS-CoV-2 significantly above titers measured in convalescent controls, with elevated IgG titers sustained for more than 6 months beyond presentation of symptoms. Based on these findings, a randomized double-blind, placebo-controlled Phase 3 study in hospitalized patients was initiated. The primary endpoint was proportion of patients alive and free from respiratory failure within 28 days. This trial was discontinued early during the period of waning COVID-19 incidence after enrolling 40 patients. Although underpowered, results from this trial suggest improvement in the primary and key secondary endpoints in patients treated with single doses of 2 mg/kg and 1 mg/kg compared to placebo. The presumed mechanism of action, stimulation of B cells, may represent a novel approach to immunotherapy of COVID-19 and other viral infections.


Subject(s)
COVID-19 , Virus Diseases , Respiratory Insufficiency
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.10.20191486

ABSTRACT

COVID-19 is a global pandemic that has resulted in over 800,000 deaths. Robust humoral anti-viral immune responses have the potential to generate a diverse set of neutralizing antibodies to eliminate viruses and protect against re-infection, transmission, and the evolution of mutations that escape targeted therapeutics. CD73 is present on the majority of human B cells and a subset of T cells where it plays a role in lymphocyte activation and migration. CD73 also functions as an ectoenzyme that converts AMP into adenosine, which can be immunosuppressive. Here we report on CPI-006, a humanized Fc{gamma}R binding-deficient IgG1 anti-CD73 antibody that blocks CD73 enzymatic activity and directly activates CD73+ B cells, inducing differentiation into plasmablasts, immunoglobulin class switching, and antibody secretion independent of adenosine. Immunophenotypic analysis of peripheral blood from advanced cancer patients receiving CPI-006 revealed evidence of B cell activation, clonal expansion, and development of memory B cells. These immune effects suggested that CPI-006 may be effective at enhancing the magnitude, diversity, and duration of humoral and cellular responses to viruses such as SARS-CoV-2. We have therefore initiated a Phase 1, single-dose, dose-escalation trial in hospitalized patients with mild to moderate COVID-19. The objectives of this trial are to evaluate the safety of CPI-006 in COVID-19 patients and to determine effects of CPI-006 on anti-SARS-CoV-2 antibody responses and the development of memory B cell and T cells. Ten patients have been enrolled in the trial receiving doses of 0.3 mg/kg or 1.0 mg/kg. All evaluable patients had low pre-treatment serum levels of anti-viral antibodies to the SARS-CoV-2 trimeric spike protein and its receptor binding domain, independent of the duration of their COVID-19 related symptoms prior to enrollment. Anti-viral antibody responses were induced 7 days after CPI-006 treatment and titers continued to rise past Day 56. Increases in the frequency of memory B cells and effector/memory T cells were observed 28 days after treatment. These preliminary results suggest that CPI-006 activates B cells and may enhance and prolong anti-SARS-CoV-2 antibody responses in patients with COVID-19. This approach may be useful for treating COVID-19 or as an adjuvant to enhance the efficacy of vaccines.


Subject(s)
COVID-19 , Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL